Abstract

The aim of this paper is to demonstrate that morphological particle properties inside the polymer matrix are responsible for the variability of mechanical properties (elasticity, strength, resilience) and fire retardancy properties. Ultrafine kaolinites were modified and employed to obtain composites of polyamide. These composites were characterized by means of mechanical (tensile static and dynamic tests) and fire retardancy properties (cone calorimeter). Their morphological properties differed significantly according to the aspect ratio and surface treatment of the kaolinites. These morphologies, characterized by the particle dispersion (interparticle distance ID) and size distribution (median diameter MD) in the polymer matrix, were directly related to the mechanical properties. The experimental results demonstrate the sensitivity of strength, resilience and flammability to particle dispersion and distribution. The yield stress decreases with the increase of MD, the resilience decreases with the increase of ID with a critical ID value from which the composite became brittle, and the pHRR increases with the increase of ID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.