Abstract
There is a clinical need for synthetic scaffolds that will promote bone regeneration. Important factors include obtaining an optimal porosity and size of interconnecting windows whilst maintaining scaffold mechanical strength, enabling complete penetration of cells and nutrients throughout the scaffold, preventing the formation of necrotic tissue in the centre of the scaffold. To address this we investigated varying slip deflocculation in order to control the resulting porosity, pore size and interconnecting window size whilst maintaining mechanical strength. Hydroxyapatite (HA) porous ceramics were prepared using a modified slip casting process. Rheological measurements of the HA slips were used to identify deflocculation conditions which resulted in changes in the cell and window sizes of the resulting ceramics. Sintered ceramics were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pore and window size distribution was determined by SEM. XRD analysis confirmed that the crystal structure remained HA after the sintering process. SEM showed that HA porous ceramics presented a highly interconnected porous network with average pore sizes ranging from 391±39 to 495±25 μm. The average window size varied from 73±5 to 135±7 μm. Pore diameters obtained were controllable in the range 200–500 μm. Window sizes were in the range 30–250 μm. The use of dispersant concentration allows pore and window size to be modified whilst maintaining control over porosity demonstrated by a porosity of 85% for seven different dispersant concentrations. The advantage of this approach allows the correlation between the rheological conditions of the slip and the resultant sintered ceramic properties. In particular, optimising the ceramic strength by controlling the agglomeration during the casting process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.