Abstract

Creosote contaminated sites have become a widespread problem in industrialized countries. Recently, wet oxidation using high temperature, pressure, water and oxygen followed by activated sludge treatment proved to be an efficient method for removing a wide selection of creosote compounds in contaminated soils. Wet oxidation of the creosote compound quinoline was carried out in the presence of montmorillionite, quartz and humic acid. The products derived from wet oxidation were identified and treated biologically by activated sludge testing their biodegradability. The influence on the oxidation kinetics of quinoline during wet oxidation was pH dependent. Humic acid supported the oxidation of quinoline, whereas the addition of montmorillionite and quartz had either an inhibiting effect or led only to a slight increase in oxidation. In mixtures of soil constituents, especially at low contents of humic acid, the adsorption of quinoline on montmorillionite prevented oxidation at neutral pH. Thus, alkaline extraction of both quinoline and humic acid was needed for an efficient oxidation. A proposed reaction mechanism suggests that quinoline was oxidized by hydroxyl radicals formed during the oxidation of the humic acid. A wide selection of reaction products (mainly carboxylic acids, benzene and pyridine derivatives) derived from the wet oxidation of humic acid and quinoline. The reaction products from humic acid degradation had a rate limiting effect on the wet oxidation of quinoline leaving small residues of quinoline after the treatment. On the contrary, these reaction products also improved the biodegradation of products from the quinoline oxidation due to co-digestion of carboxylic acids. Therefore, the presence of soil components (mainly humic acid) improved the combined wet oxidation and biological activated sludge treatment of quinoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.