Abstract

The El Niño–Southern Oscillation is known to influence surface temperatures worldwide. El Niño conditions are thought to lead to anomalously warm global average surface temperature, absent other forcings. Recent research has identified distinct possible types of El Niño events based on the location of peak sea surface temperature anomalies. Here we analyze the relationship between the type of El Niño event and the global surface average temperature anomaly, using three historical temperature data sets. Separating El Niño events into types reveals that the global average surface temperatures are anomalously warm during and after traditional eastern Pacific El Niño events, but not central Pacific or mixed events. Historical analysis indicated that slowdowns in the rate of global surface warming since the late 1800s may be related to decadal variability in the frequency of different types of El Niño events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.