Abstract

In this study, graphene/TiO2 composite films at different annealing temperatures from 450 to 650 °C acted as photoelectrode of dye-sensitized solar cell (DSSC). The graphene/TiO2 composite films were characterized by scanning electronic microscopy, X-ray diffractometer, and electrochemical impedance spectroscopy. The Nyquist plot is built to simulate the redox reaction of internal device at the heterojunction by an equivalent circuit model. It is useful to analyze the component structure and promote photovoltaic conversion efficiency of DSSC. According to the experiment results, the optimal annealing temperature of graphene/TiO2 composite film was 550 °C, where the open-circuit voltage was 0.74 ± 0.01 V, the short-circuit current density was 14.17 ± 0.32 mA/cm2, the fill factor was 51.00 ± 1.95%, and the photovoltaic conversion efficiency was 5.34 ± 0.12%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.