Abstract

Ferrimagnetic glass–ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass–ceramic samples. Thus, two different ferrimagnetic glass–ceramics with the composition of the system Na 2O–CaO–SiO 2–P 2O 5–FeO–Fe 2O 3 were prepared by melting at 1500 °C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass–ceramic with lower iron oxides content and 25 W/g for the glass–ceramic with higher iron oxide content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.