Abstract

We report the anisotropy of magnetic field-induced entropy change in rare earth Er1-yTbyAl2 compounds (y=0.00, 0.25, 0.50, 0.75 and 1.00). In the present work, we use a model Hamiltonian that includes the crystalline electrical field anisotropy in both Er and Tb magnetic sublattices, chemical disorder in exchange interactions among Er-Er, Tb-Tb and Er-Tb magnetic ions and the Zeeman effect. We investigated the isothermal magnetic entropy change ΔST for a magnetic field of 1T rotating from a hard 〈001〉 to the easy 〈111〉 direction. We also performed a systematic analysis of the reorientation temperature as a function of the magnetic field intensity. The anisotropic magnetocaloric effect highlights the applicability of this effect on the rotating magnetic refrigeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.