Abstract

We studied the critical state stability of a large cubic sample of single-crystalline La1.85Sr0.15CuO4 for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop under dynamic conditions, which are characterized by the magnetic diffusivity being significantly lower than the thermal case. In this case, the critical state stability depends strongly on the cooling conditions. We compared predictions from the isothermal model and from the model for a weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with increase of the sweep rate of the external magnetic field. We also investigated the influence of the external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity, which is proportional to the flux flow resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call