Abstract

AbstractGradients in the bedrock strength field are increasingly recognized as integral to the rates and patterns of landscape evolution. To explore this influence, we incorporate data from fault strength profiles into a landscape evolution model, under the assumption that erodibility of rock is proportional to the inverse square root of cohesion for bedrock rivers incised by bedload abrasion. Our model calculations illustrate how patterns in the crustal strength field can play a dominant role in local fluvial erosion rates and consequently the development of fluvial network patterns. Fluvial incision within weak zones can be orders of magnitude faster than that for resistant bedrock. The large difference in erosion rate leads to the formation of a straight, high‐order channel with short, orthogonal tributaries of low order. In comparison, channels incising into homogeneous strength fields produce dendritic drainage patterns with no directional dependence associated with erodibility gradients. Channels that cross the strength gradient experience local variations in knickpoint migration rate and the development of stationary knickpoints. Structurally confined channels can shift laterally if they incise into weak zones with a shallow dip angle, and this effect is strongly dependent on the magnitude of the strength difference, the dip angle, and the symmetry and thickness of the weak zone. The influence of the strength field on drainage network patterns becomes less apparent for erodibility gradients that approach homogeneity. There are multiple natural examples with drainage network patterns similar to those seen in our numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.