Abstract

The influence of cross-section shape on rock stability was investigated by designing a similar model test and numerical simulation using particle flow code (PFC). The test results showed that the left- and right-hand sides of the entrance are subjected to tension, mainly forming vertical cracks or oblique cracks with a large dip angle. The vicinity of the entrance is subjected to the shear effect and the overall failure of the model is brittle in the similar test. Mesoscopic fractures mainly appear as tensile fractures, and a small number of shear fractures are found in the vicinity of the entrance. A long narrow coalescent-fracture zone is separately formed at the left- and right-hand sides of the entrance when approaching peak load in PFC test. Stress concentration occurs at the end of the long axis of the elliptic cross-section. The stress is high at the arch foot and spandrel of a horseshoe-shaped cross-section and a coalescent fracture zone formed at the arch foot on the right-hand side caused the tunnel to fail. The ovoid-shaped and vertical-wall-arched cross-sections are under significant tension, owing to the force chains distributed along the tunnel wall, show a large included angle with the tunnel wall. From the perspective of bearing capacity, a circle is the best section. From the perspective of failure mode, the horseshoe-shaped section is more suitable for use in corresponding practical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call