Abstract

The addition of suitable cross-linking agents with norbornene-based monomers has significant effects on the thermal properties of the resulting polymers formed by olefin metathesis. Ethylidene norbornene (ENB) and endo-dicyclopentadiene (endo-DCPD) were mixed separately with various loadings of three different cross-linking agents and then polymerized with the addition of Grubbs’ catalyst. The polymerization kinetics and resulting glass transition temperature (T g) of the systems were evaluated by differential scanning calorimetry (DSC). The addition of the first cross-linking agent, norbornadiene (CL-1), to both endo-DCPD and ENB resulted in decreasing glass transition temperatures with increasing concentrations. In contrast, the addition of the other two cross-linking agents (CL-2 and CL-3), which were both custom synthesized bifunctional norbornyl systems, to both endo-DCPD and ENB resulted in a monotonic increases in T g with cross-linker concentration. By tailoring the loading of these custom cross-linking agents, the properties of these polymer systems can be controlled for various applications, including self-healing composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.