Abstract

The influence of Cr addition on the microstructure and tensile properties of Fe-25Mn-10Al-1.2C lightweight steel was investigated. The characteristics of the microstructures and deformation behavior were carried out through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and room temperature tensile testing. Fe-20Mn-12Al-1.5C steel without Cr exhibited a fully austenitic single phase. With the addition of Cr, the volume fraction of ferrite continuously increased. When the content of Cr exceeded 5 wt%, the precipitation of Cr7C3 carbides was observed. In the steel with 5 wt% Cr, the quantity of κ carbides remarkably decreased, indicating that the addition of 5 wt% Cr significantly inhibited the nucleation of κ-carbides. As the Cr content increases from 0 wt% to 5 wt%, the austenite grain sizes were 8.8 μm and 2.5 μm, respectively, demonstrating that Cr alloying is an effective method of grain refinement. Tensile strength increased slightly while elongation decreased with increasing Cr content. As the Cr content exceeded 5 wt%, the yield strength increased but the elongation drastically decreased. The steel with 2.5 wt% Cr achieved a synergistic improvement in strength and ductility, exhibiting the best tensile performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call