Abstract
Ten neutral monomeric, dimeric and polymeric mercury(II) complexes of compositions HgX(2)L (3, 8), [HgX(2)L](2) (1, 2, 4-6 and 7), [Hg(NO(3))(2)L](n) (9) and {[Hg(N(3))(2)L](2)}(n) (10) where X = chloride, bromide, iodide, nitrate and azide, and L = (E)-N-(pyridin-2-ylmethylidene)arylamine, are described. Compounds 1-10 were characterized by elemental analyses, and IR and (1)H NMR spectroscopic studies. The solution-state photophysical properties of the complexes are highly dependent on the anions as seen in the fluorescence emission features. Single-crystal X-ray crystallography showed that the molecular complexes can aggregate into larger entities depending upon the anion coordinated to the metal centre. Iodide gives discrete monomeric complexes, chloride and bromide generate binuclear complexes formed through Hg-X-Hg bridges, while nitrate and azide lead to 1D coordination polymers. The significant differences in the observed aggregation patterns of the compounds indicate that the anions exert a substantial influence on the formation of the compounds. A further influence upon supramolecular aggregation is the presence of methyl substituents in L(3) and L(4), which generally enhances the probability of forming supramolecular ππ interactions involving the five-membered C(2)N(2)Hg chelate rings in their crystal structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.