Abstract

We investigate the influence of the Coulomb interaction on the energy spectrum of a finite number of electrons in a geometrically confined quantum mechanical system. The spectrum is calculated numerically using the Slater determinants of the one-electron states as basis set. It is found to be dominated by the Coulomb repulsion when the system is large. Coulomb and exchange matrix elements for a given combination of four one-electron states are of the same order of magnitude. As a consequence, the energy difference between the ground states of the (N+1)- and theN-electron system is an order of magnitude smaller than each of the matrix elements, although being much larger than the separation of the one-electron energy levels. We discuss the importance of the interaction effects for the explanation of the recently observed resonant behavior of the electronic transport through quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.