Abstract

Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

Highlights

  • An ecosystem’s ability to recover from degradation is eroded by increases in frequency, intensity and array of disturbances [1,2,3,4]

  • The following data were collected along each transect; 1) live benthic cover recorded at 0.5 m intervals, 2) underlying substratum quantified at 0.5 m intervals, 3) number and identity of all fish greater than 8 cm were recorded along a 5 m wide belt, and 4) structural complexity was recorded using both a 6-point scale and by estimating the number of small refuge holes,10 cm diameter, along two 1061 m sub-transects

  • The first principal components axis (PC1) of the benthic PCA differentiated transects along a gradient from high coral cover and structural complexity at negative PC1 scores, to high macroalgae cover and low structural complexity at positive PC1 scores (Figure 1)

Read more

Summary

Introduction

An ecosystem’s ability to recover from degradation is eroded by increases in frequency, intensity and array of disturbances [1,2,3,4]. The causes attributed to the shift from coral to macroalgae on Jamaican coral reefs included overfishing of herbivorous fish, hurricane Allen and disease mediated collapse of urchin populations, the description was based solely on benthic composition [11]. How these changing benthic communities interact with underlying substrata, or influence the rest of the coral reef ecosystem, for example reef fish assemblages, is poorly understood

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.