Abstract

Device-related infection or inflammatory and stress shield are still the main problems faced by titanium alloy implants for long-term implantation application; therefore, it is of great significance to design an alloy with low elastic modulus and good antibacterial properties as well as good biocompatibility. In this paper, Ti-13Nb-13Zr-xCu(x = 3, 7 wt.%) alloys were designed and prepared to reveal the influence of Cu content on the elastic modulus and antibacterial property. X-ray diffractometer, metallographic microscope, scanning electron microscope, and transmission electron microscope were used to study the phase transformation, microstructure, mechanical properties, antibacterial properties, and cytotoxicity of the alloys. The experimental results have demonstrated that the antibacterial performance and the elastic modulus were significantly improved but the corrosion resistance deteriorated with the increase of the copper content. Ti-13Nb-13Zr-3Cu with a low modulus of 73 GPa and an antibacterial rate of over 90% against Staphylococcus aureus (S. aureus) exhibited great potential as a candidate for implant titanium in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call