Abstract

Midlatitude squall lines are typically trailed by a large region of stratiform cloudiness and precipitation with significant mesoscale flow features, including an ascending front to rear flow; a descending rear inflow jet; line-end vortices; and, at later times, mesoscale convective vortices. The present study suggests that the mesoscale circulation in the trailing stratiform region is primarily determined by the time-mean pattern of heating and cooling in the leading convective line. Analysis of the line-normal circulation shows that it develops as thermally generated gravity waves spread away from the leading line. Midlevel line-end vortices are the result of diabatically driven tilting of horizontal vorticity generated by the time-mean thermal forcing. In the presence of the Coriolis force, a symmetric thermal forcing generates an asymmetric stratiform circulation and a pattern of vertical displacement that resembles the comma-shaped stratiform anvil observed in real systems; this suggests that asymmetries in the cloud and circulation behind midlatitude squall lines are not necessarily the result of asymmetries in the convective leading line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.