Abstract

Genetic variability and structuring of rabbitfish populations with contrasting life histories, Siganus argenteus and Siganus fuscescens were determined using allozyme analysis. A total of 13–14 polymorphic loci were examined from samples collected in 2002 and 2003 from eight reefs representing 25 populations north (Kuroshio Current) and south (Mindanao Current) of the bifurcation of the North Equatorial Current along the eastern Philippine coast. S. fuscescens populations (H OBS = 0.085) showed higher heterozygosity than S. argenteus (H OBS = 0.053), consistent with predictions of the neutral theory for demersal egg spawners compared to pelagic egg spawners. The generally lower genetic variability of Kuroshio populations may be due to greater environmental disturbance affecting larval mortality and recruitment success. There was no significant overall population genetic structuring for S. argenteus (F ST = 0.01485, P > 0.05) compared to S. fuscescens (F ST = 0.03275, P < 0.05). The latter species showed highly significant genetic structuring among Kuroshio and Mindanao Current populations in both 2002 and 2003 (F CT = 0.08120, P < 0.05; F CT = 0.07500, P < 0.05, respectively), as well as among populations within regions. This conforms to expectations of correlations between observed population genetic structure and life history features related to dispersal potential and gene flow. However, there were significant temporal (i.e., 2002 vs. 2003 samples) genetic variations for both S. fuscescens (F CT = 0.08542, P < 0.05) and S. argenteus (F CT = 0.06330, P < 0.05), which may reflect interannual variability in recruitment success. Differences in population spatial genetic patterns between the two reef fish species suggest that broad scale physical factors (e.g. NEC bifurcation) and regional environmental perturbations (e.g. incidence of typhoons) affect population genetic structure of sympatric congeneric species with different life histories differently. Finer scale ecological processes, which affect larval dispersal and recruitment (e.g., local hydrographic features, distribution of habitats), particularly in the Mindanao Current region, exert more influence on structuring populations of S. fuscescens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call