Abstract

Abstract Exhaust gas of an automotive fuel cell is enriched with water vapour and has a pressure potential which can be utilized by a turbine. The gas expansion in the turbine leads to droplet nucleation and condensation. This results in a release of latent heat and a decrease of the gaseous mass flow which has a considerable influence on the turbine performance. This study aims to numerically investigate the influence of these phenomena on the performance map of the radial turbine of an automotive fuel cell turbocharger. For this purpose, the classical nucleation theory and Young’s droplet growth law are integrated into an Euler-Lagrange approach. The results show an almost linear relation between the pressure ratio and the condensation while the specific aerodynamics of an operating point has only a minor influence. At 80 % relative humidity of the inflow, the investigated turbine showed condensation above a total-to-static pressure ratio of 1.8. Condensation leads to thermal throttling of the turbine and to a temperature increase of the rotor outflow of up to 50 K. Increasing humidity of the inflow increases the power output, but condensation losses reduce the efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.