Abstract

Various forces govern the fiber–fiber interaction in a flowing suspension, causing fibers to create flocs. The aim with this investigation was to examine the influence of colloidal interactions on the fiber network strength by varying surface charge density, electrolyte concentration, and type of counterion. This was accomplished by comparing surface force measurements, utilizing colloidal probe microscopy (CPM), with the apparent yield stress, using a parallel plate rheometer. Results show that by increasing the charge density by grafting carboxymethyl cellulose (CMC) to the surface, a large electrosteric repulsion is created, which gives weaker network strength. Increasing the electrolyte concentration decreases the repulsion. The network strength was, however, not affected by electrolyte concentration for untreated fibers whereas a high electrolyte concentration increased the yield stress for CMC-treated fibers. The change of counterions affect the repulsion, causing a change in network strength due to differences in the surface swelling of cellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.