Abstract

The influence of various cocatalysts on the activity and stereospecificity of a supported magnesium–titanium catalyst, generated by in situ reduction of titanium (IV) chloride using a Grignard reagent (MgCl2/TiCl3) or prepared by the recrystallization method (MgCl2/2M2P/ED/TiCl4, 2M2P= 2-methyl-2-pentanol, ED= dibutyl phthalate or ethyl benzoate), in the 1-hexene polymerization was investigated. The MgCl2/TiCl3 catalyst showed the highest activity but the lowest stereospecificity in the 1-hexene polymerization with all investigated cocatalysts. The MgCl2/2M2P/ED/TiCl4 catalyst with dibutyl phthalate as an internal electron donor was characterized by the highest stereospecificity and led to the polymers with high molecular weight. All catalysts showed the highest activity and stereospecificity when triisobutylaluminium was used as a cocatalyst. The addition of a small amount of ethyl benzoate as an external electron donor ([Al]/[ED] 10:1) led to considerable improvement of the stereospecificity of the MgCl2/TiCl3 catalyst in comparison with the catalysts prepared by the recrystallization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.