Abstract

We present an investigation of the influence of cobalt substitution for nickel on the electrochemical cycle life of LaNi 5-based alloys. Lattice expansion during hydriding was measured by means of X-ray diffraction for the alloys LaNi 4Co, LaNi 3.5CoAl 0.5 and LaNi 4.5Al 0.5. The surface composition of the alloy grains was analysed by means of X-ray photoelectron spectroscopy (XPS). The XPS-depth-profiles are mentioned in this paper. The mechanical and electrochemical properties of these alloys and additionally of Zr 0.2,La 0.8Ni 4.5Al 0.5 and Er 0.2, La 0.8Ni 4.5Al 0.5 were also measured. We observed a strong correlation between the hardness of these alloys and the cycling stability. Harder alloys lose capacity more rapidly with cycling. Cobalt appears to lower the hardness and therefore increase the cycle life of these alloys. It is well known that alloys which show a large lattice expansion during hydriding, pulverize faster with cycling. This behaviour was clearly observed in our measurements. The combination of a minimal lattice expansion and a low hardness seem to have a synergetic effect in increasing the cycle life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.