Abstract

Co-doped ZnO nanoparticles have been synthesized by co-precipitation technique. Photoluminescence spectra change in the range from 350 nm to 600 nm and remain unchanged at about 690 nm with the Co content increase. The UV emission is assigned to exciton emission. The density of band-edge states increases with Co content. The blue emission could be ascribed to the recombination of electrons in Co[Formula: see text] ions and holes in the valence band, whose relative intensity and full-width at half-maximum (FWHM) increase with the increase of cobalt concentration. The red emission results from the intra-d-shell emission at Co, which is independent of Co content. The relative density and energy-level position of green emission centers are also influenced by Co content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.