Abstract

The article contains an analysis of the influence of cloudiness and atmospheric circulation on the components of radiation balance (Q*) using the example of measurements taken in an extra-urban area of Koniczynka near Toruń (Central Poland) in the years 2011–2018. The average annual value of Q* was 1,818.5 MJ·m−2 with a maximum of 352.3 MJ·m−2 in June, and negative values from November to January (December: −27.4 MJ·m−2). The shortwave radiation balance (S*) amounted to 3,129.2 MJ·m−2 and the longwave radiation balance (L*) was ˗1,310.7 MJ·m−2. In June the average solar irradiance (S↓) at midday was 600 W·m−2. The natural annual and diurnal course of Q* components, determined by astronomical factors, is disturbed by changes in cloudiness and inflow of various air masses. It has been found that an increase in cloudiness causes the amount of incoming solar radiation (S↓) to fall, thus decreasing the S* balance. Moreover, clouds restrict longwave radiation balance (L*), in particular, downward atmospheric radiation (L↓) increases. The opposite relationships of S* and L* affect Q* in individual months. The components of Q* are influenced by atmospheric circulation; it has been observed that anticyclonic types, characterised by smaller cloud amounts, favour a greater influx of (S↓) and—at the same time—greater emittance (L↑); however, Q* is then greater than in the case of cyclonic circulation. A statistically significant trend of Q* and its components has not been ascertained. A notable great year-on-year variability of Q*, ranging from 1,640.4 MJ·m−2 (in 2011) to 2,081.6 MJ·m−2 (in 2018), affects the environment. The changes are related to the cloudiness and the frequency of occurrence of different atmospheric circulation types. The role of snow cover is also important as snow reflects solar radiation which leads to the decrease of S* and—as a result—to a negative value of Q* in winter.

Highlights

  • Solar energy reaching Earth affects the functioning of the global climate system (Lockwood 2012)

  • The results obtained at Koniczynka in the years 2011–2018 made it possible to analyse the variability of the components of Q* in the diurnal and annual course

  • The values of S↓ at Koniczynka are higher than the mean values calculated for the nearby cities of Toruń and Bydgoszcz in 1956–1975 (Miara et al 1987)

Read more

Summary

Introduction

Solar energy reaching Earth affects the functioning of the global climate system (Lockwood 2012). On the basis of data contained in the Baseline Surface Radiation Network, satellite observations and results obtained from global climate models, Wild et al (2019) stated that for a clear-sky atmosphere the average intensity of S↓ is 247 Wm−2, whereas in the case of L↓ it is 314 Wm−2. S↓ reaches Earth’s surface in the form of direct and diffuse radiation. The quantity of S↓ is determined by the angle of solar rays, and by the optical properties of the atmosphere, mainly cloudiness and water vapour and aerosol content in the air (Yu et al 2006)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call