Abstract

In this paper, we examine the behavior of the quantum energy levels of a coupled oscillator system as the zero-order frequencies are varied to carry the corresponding classical system through a resonance. We find that the levels exhibit a pattern that is characteristic of the resonance. This pattern consists of clusters of levels, each containing a number of curves that run roughly parallel to one another and a number of curves that undergo pairwise narrowly avoided crossings. Adiabatic switching calculations show that the ‘‘parallel’’ curves are associated with states within the classical resonance region, while the narrowly avoiding curves are associated with states that are outside this region. It is further shown that the curves describing resonance states are formed from zero-order nonresonant curves by the overlap of many avoided crossings. This reorganization of multiply intersecting lines into parallel curves reflects the classical reorganization of phase space at a resonance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.