Abstract

We present an analysis of the impact of circulation weather types (CT) on a factor that might influence biological systems and the human condition, the electric state of the atmosphere. We present results on the influence of CT to the magnitude, the direction (positive or negative), the fluctuation magnitude, and the short-term peaks of the atmospheric electric field (potential gradient, PG), using data from a station in Greece. CTs with high vorticity centers over Greece are associated with high positive and negative excursions of the PG, higher PG variability, and rain events. CTs with thinner 850–500 hPa layer are associated with higher daily mean values of fair-weather PG. We also examine the influence of CT on the frequency and amplitude of the naturally occurring extremely low-frequency electric field fluctuations known as Schumann resonances (SR) using data from a station in Hungary. The first and second mode SR frequencies are increased during CTs associated with higher 500 hPa geopotential heights and higher 850–500 hPa layer thickness. This hints to a lower-upper atmosphere coupling. So, CTs not only influence the general temperature and humidity conditions to which the biosphere is exposed, but they also affect its exposure to atmospheric electric fields.

Highlights

  • Impacts of atmospheric parameters on human health have been documented for a long time and range from impacts on thermal comfort, vector-borne disease (e.g., McGregor 2011), children health (e.g., Vanos 2015), and fall and hip fractures

  • The synoptic meteorological analysis resulted in the categorization of each day to one of 10 PXE circulation weather types over Europe and the Eastern Mediterranean with regard to patterns of sea-level pressure (SLP), relative vorticity at 500 hPa, geopotential height at 500 hPa, and thickness of the layer between the 850 and 500 hPa isobaric surfaces, which are shown in Fig. 1 and described below

  • Most circulation weather types (CT) appear about 10% of the time each, except for CT10 which appears 6.9% of the time and CT9 and CT6 which appear for 12.5% and 15.7% of the time, respectively

Read more

Summary

Introduction

Impacts of atmospheric parameters on human health have been documented for a long time and range from impacts on thermal comfort, vector-borne disease (e.g., McGregor 2011), children health (e.g., Vanos 2015), and fall and hip fractures. Factors that influence human health are diverse and range from temperature, changes in atmospheric pressure, humidity (e.g., Davis et al 1996), and a variety of other factors. It has been shown that abrupt changes in weather have a large biometeorological impact. Research on relationships between large-scale atmospheric circulation and different climatic and environmental variables. Relationships between circulation weather types and human well-being have been studied by a number of authors (e.g., Lecha Estela 1998; Kassomenos et al 2001; de Pablo et al 2009) Int J Biometeorol (2021) 65:93–105 has seen a revival in recent years, due to its usefulness in a variety of applications (e.g., Jacobeit 2010; Ramos et al 2015 and references therein), including biometeorology (e.g., Kyselý and Huth 2010; Greene and Kalkstein 1996; Kassomenos et al 2007) and electrification of the atmosphere as demonstrated by lightning (Pineda et al 2010; Ramos et al 2011).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.