Abstract

Making music on a professional level requires a maximum of sensorimotor precision. Chronotype-dependent fluctuations of sensorimotor precision in the course of the day may prove a challenge for musicians because public performances or recordings are usually scheduled at fixed times of the day. We investigated pianists' sensorimotor timing precision in a scale playing task performed in the morning and in the evening. Participants' chronotype was established through the Munich Chrono-Type Questionnaire, where mid-sleep time served as a marker for the individual chronotypes. Twenty-one piano students were included in the study. Timing precision was decomposed into consistent within-trial variability (irregularity) and residual, between-trial variability (instability). The timing patterns of late chronotype pianists were more stable in the evening than in the morning, whereas early chronotype pianists did not show a difference between the two recording timepoints. In sum, the present results indicate that even highly complex sensorimotor tasks such as music playing are affected by interactions between chronotype and the time of day. Thus, even long-term, massed practice of these expert musicians has not been able to wash out circadian fluctuations in performance.

Highlights

  • Periodic processes within biological organisms occur at various timescales, such as seconds, days, weeks, or months

  • There was no correlation between mid-practice time” (MPT) and mid-sleep time point on free days (MSF) [Pearson r(19) = 0.26, p = 0.25], nor the corrected mid-sleep time on free days (MSFsc) [Pearson r(19) = 0.33, p = 0.14]

  • We expected that this trace would not be susceptible to circadian fluctuations, since basic properties of the motor system such as muscle- and joint materials remain the same throughout the day

Read more

Summary

Introduction

Periodic processes within biological organisms occur at various timescales, such as seconds (e.g., heartbeat or respiration), days (e.g., the sleep cycle), weeks (e.g., the circaseptan rhythms), or months (e.g., menstruation cycle). Those processes that operate on a roughly 24-h cycle are governed by the circadian clock, which provides a temporal structure that modulates biological functions to match the daily cycle with the environment (Roenneberg and Merrow, 2003; Merrow et al, 2005). To our knowledge, no studies exist that investigate variations in musical performance according to the circadian cycle

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.