Abstract

The Fe–Cr–C ternary steels containing different contents of Cr were successfully cast and further processed in the lab. Differential scanning calorimetry (DSC), optical microscope (OM), and scanning electron microscope (SEM) were employed to investigate the transformation of the Fe–Cr–C ternary steels from pearlite to austenite. It is found that the values of Ac1 and Ac3 are raised with increase in the content of Cr. In addition, the information on the transformation kinetics was obtained from experiment results and the Johnson-Mehl-Avrami-Kolmogorov model (JMAK). The obtained austenitic transformation kinetic process has been described in three overlapping steps: site saturation nucleation, diffusion-controlled growth, and impingement correction. The pre-exponential factor for diffusion decreases firstly and then increases. The activation energy for diffusion increases with the Cr content. In addition, Cr strongly affects the effective diffusion distance, the austenite nucleation sites, and the carbon activity gradient during the austenitic transformation kinetic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.