Abstract

Measurements of the difference in flexoelectric coefficients (e 1 – e 3), using the sign convention as originally defined by Meyer, are reported from three experiments employing the flexoelectro-optic effect in different geometries. The uniform lying helix (ULH) structure is used to measure the tilt angle of the liquid crystal director with respect to the helix axis for an applied electric field, in order to infer a value for (e 1 – e 3). Alternatively, measurements of the flexoelectric difference can be made by considering the transmission through a device with an in-plane electric field aligned in either the Grandjean structure for highly chiral materials, or a twisted nematic (TN) structure for largely achiral materials. The results from the Grandjean and ULH structures show the equivalence of the measurement techniques with helix axis either perpendicular or parallel to the substrates. Further comparison of these results with the measurement from the achiral TN device shows that the difference in flexoelectric coefficients displays no dependence on chirality, demonstrating that flexoelectricity is purely associated with splay and bend director deformations, as expected from symmetry considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.