Abstract
A numerical study is presented on the effects of chemical reaction and magnetic field on the unsteady free convection flow, heat and mass transfer characteristics in a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate by taking into account the heat due to viscous dissipation. The problem is governed by coupled non-linear partial differential equations. The dimensionless equations of the problem have been solved numerically by the implicit finite difference method of Crank - Nicolson?s type. The effects of governing parameters on the flow variables are discussed quantitatively with the aid of graphs for the flow field, temperature field, concentration field, skin-friction, Nusselt number and Sherwood number. It is found that under the influence of chemical reaction, the flow velocity as well as concentration distributions reduce, while the viscous dissipation parameter leads to increase the temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Industry and Chemical Engineering Quarterly
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.