Abstract

The sandwich approach, whereby an antigen is captured by a primary antibody and detected by a secondary antibody, is commonly used to improve the selectivity and sensitivity of enzyme-linked immunosorbent assays (ELISA). This work details the experimental factors that impact the reliable translation of this sandwich approach to two commonly used electronic biosensors, namely potentiometric and impedimetric biosensors. Previous studies have demonstrated the Debye screening limitations associated with potentiometric biosensors. However, the correlation between the ionic strength of the measurement buffer and the impedimetric biosensing response has not been studied. Potentiometric biosensors were able to successfully detect the primary antibody and the target antigen by decreasing the ionic strength of the phosphate buffered saline (PBS) measurement buffer from 1x PBS to 0.01x PBS. However, the secondary antibody used for the selective signal amplification was not reliably detected. Therefore, the sandwich approach is not viable for potentiometric sensing at biologically relevant ionic strengths, due to the Debye screening effect. Alternatively, decreasing the ionic strength of the measurement buffer allowed for the successful translation of the sandwich approach to impedimetric biosensors. Impedimetric biosensing literature typically attributes a measured increase in the charge transfer resistance to an increase in the thickness of the immobilized biolayer. However, this work highlights the influence that both the charge and thickness of the biolayer have on the transport of the redox couple. Decreasing the ionic strength of the measurement buffer lowers the molecular charge screening effect. This permits the transport of a positively charged redox probe through a negatively charged immobilized biolayer via migration and diffusion. The results demonstrate that the use of a buffer at a lower, yet biologically relevant ionic strength allows for the successful translation of the sandwich approach to impedimetric biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call