Abstract

Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polaron dynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4. We experimentally observed the influence of magnetic order on polaron dynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. This provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.

Highlights

  • Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polaron dynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4

  • We observe a fast relaxation component attributed to polaron dynamics that is influenced by the development of spin order, as well as a slower oscillating component that substantially changes across the CO transition

  • We show that these oscillations are due to the generation of coherent acoustic phonons through the electronic deformation potential, driven by photoinduced changes in the electron temperature

Read more

Summary

Introduction

Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polaron dynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe2O4. We observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.