Abstract

The purpose of this study was to investigate the effects of carbon fiber (CF) and thermotropic liquid crystal polymer (TLCP) as co-reinforcements on the mechanical properties of composites. The TLCP fibers were produced by melt exclusion. CF and TLCP co-reinforced PA6 composites (CF/TLCP/PA6) were prepared by the lamination molding method. The influence of molding temperature, TLCP content, compatibilizer, and pre-impregnation process on microstructure and mechanical properties of the CF/TLCP/PA6 composites were investigated with Electronic Microscopy and Mechanical tests (flexure and interlaminar shear) by Scanning Electron Microscope (SEM) and Universal Test Machine. It was found that the optimum molding temperature was 240 °C. The mechanical properties of the composites first increased and then decreased with an increase of TLCP content. The introduction of a compatibilizer obviously improved the mechanical properties of the composites. When the TLCP content was 15 wt%, the molding temperature was 240 °C, and 5 wt% compatibilizer was added, the comprehensive mechanical properties of the composites in terms of the flexural and interlaminar shear strengths were the best, which were 363.5 ± 4.4 MPa and 44.9 ± 2.9 MPa, respectively. The addition of TLCP fibers could prevent the propagation of microcracks in the composites, which further improved their mechanical properties due to the synergistic effect with CFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call