Abstract

The influence of center-surround antagonism on light adaptation in cone photoreceptors was investigated by intracellular recording from red-sensitive cones in the retina of the turtle, Pseudemys scripta elegans. Test flashes of 0.15-mm diameter were applied at the center of background fields of 0.25-mm or 2.2-mm diameter. Immediately upon expanding the background from 0.25 to 2.2 mm, the membrane potential depolarized by about 1-4 mV. The test flash response was enhanced if the depolarization was primarily due to synaptic feedback from horizontal cells, whereas the response was attenuated if the prolonged depolarization, an intrinsic response of the cone, was the dominant source of the depolarization. After several seconds, however, only the synaptic depolarization was maintained so maintained illumination of the large background field produced an enhancement of the cone's incremental sensitivity. The enhancement was examined in detail in steady-state conditions by obtaining amplitude-intensity measurements for centered test flashes on steady background fields over a large range of intensity. The effect of the large background field at any fixed intensity was fairly well described as a vertical (upward) shift of the amplitude-intensity curve obtained on the small field. This operation constitutes a quasi-subtractive mechanism of light adaptation and might provide a basis for the sort of subtractive mechanisms inferred from psychophysical studies of human vision. The enhancement was quantified by measuring the incremental sensitivity over four decades of background illumination. The magnitude of the enhancement increased with background intensity and then tended to stabilize at higher background intensities. The maximum difference in incremental sensitivity obtained on the large vs. small background field averaged 0.46 log unit (+/- 0.12 S.D.). At higher background intensities, incremental sensitivity conformed to Weber's Law behavior about equally well for flashes applied on either small or large background fields. In sum, the present results provide evidence for an additional mechanism of light adaptation in cone photoreceptors by showing that the incremental light sensitivity, initially set by mechanisms in the outer segment, can be modulated some three-fold by synaptic feedback at the inner segment of the cone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call