Abstract

Their intense optical absorbance in the near-infrared window and chemical versatility make gold nanorods attractive for biomedical applications, such as photothermal therapies and photoacoustic imaging. However, their limited photostability remains a drawback of practical concern. In fact, when gold nanorods are irradiated with nanosecond laser pulses in resonance with their plasmon oscillations, there may occur reshaping into spherical particles or even fragmentation at higher optical fluences, which cause substantial modifications of their optical features with a loss of photoacoustic conversion efficiency. In this contribution, we focus on how the gold nanorods photostability is affected when these particles are modified for cellular uptake, by investigating their stability and photoacoustic conversion efficiency under near infrared pulsed irradiation at different laser fluences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.