Abstract

Degradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine operando electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI. By adding representative concentrations of Ni2+, Mn2+, and Co2+ ions into a commercially relevant battery electrolyte, the impacts of each on the formation and stability of the anode interface layer is revealed; all are shown to pose a threat to battery performance and stability. Mn2+, in particular, is shown to induce a thick, soft, and unstable SEI layer, which is known to cause severe degradation of batteries, while Co2+ and Ni2+ significantly impact interfacial conductivity. When transition metal ions are mixed, SEI degradation is amplified, suggesting a synergistic effect on the cell stability. Hence, by uncovering the roles these cathode degradation products play in operational batteries, we have provided a foundation upon which strategies to mitigate or eliminate these degradation products can be developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call