Abstract

AbstractOlefin polymerization, especially of propylene in gas‐phase fluidized bed reactors, is increasingly prevalent because of its ability to handle the continuous process, among other advantages. The challenge for modelling this process is solving the high nonlinearity phenomena in such a system. This research studies the influence of catalyst flow rate and superficial gas velocity on the modified two‐phase model. The catalyst flow rates were set at 1 × 10−4, 2 × 10−4, and 3 × 10−4 kg/s, while the superficial flow rates were set at 0.35, 0.5, and 0.65 m/s. Production rate, reactor temperature, and heat‐loss flow rate were found to be proportional to catalyst flow rate and inversely proportional to superficial gas velocity. Heat loss through the fluidized bed wall had an influence only on the reactor temperature. Finally, predicted reactor temperatures corresponded closely to the pilot plant data, with deviations smaller than 0.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.