Abstract

Austempering kinetic measurements and mechanical property measurements are reported for irons with different Mn contents and different nodule counts after austenitising at 870 °C and austempering at 375 °C. It is shown that increasing nodule count, which reduces segregation and changes the size and distribution of intercellular boundaries, increases the interphase boundary area between graphite and matrix and decreases the continuity of the unreacted austenite in the intercellular boundary. This accelerates the stage I reaction which broadens the heat treatment window and moves it to earlier austempering times. A high nodule count can be used to counter the delay of the stage I reaction caused by Mn additions used to increase the hardenability of the iron. A high nodule count produces a finer, more uniform ausferrite structure that increases the strength, ductility and impact energy of the austempered iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.