Abstract

Abstract This study investigates virgin and recycled high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites using thermo-physical and mechanical characterization techniques to generate knowledge and understand recyclability of these composites. Firstly, virgin samples with 0.1–5 wt.% of MWCNTs were prepared by injection molding. Then, the HDPE/MWCNT composite waste was mechanically recycled and consecutively reprocessed by injection molding. The experimental results show that, after the first mechanical recycling and reprocessing cycle, the thermal, rheological, mechanical, and electrical properties for the recycled and virgin HDPE/MWCNT composites with 0.1–3 wt.% were rather similar within the experimental error of the measurements. In contrast, the recycled HDPE/MWCNT composites with 5 wt.% showed a reduction in viscosity, mechanical and electrical properties with recycling. After four recycling and reprocessing cycles, degradation in the Young modulus (−35%), tensile strength (−25%), elongation at break (−60%) and electrical conductivity (−2 orders of magnitude) of the HDPE/MWCNT composite with 5 wt.% was observed as compared with the virgin composite. From an industrial perspective, it is feasible to recycle HDPE/MWCNT composite waste by mechanical recycling and use it to manufacture products with favorable mechanical properties, covering insulating, antistatic and semiconducting ranges depending on the MWCNT loading, owing to the protective effect of carbon nanotubes against thermomechanical degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.