Abstract

The effect of carbon addition on Fe-22.0Al-5.0Ti alloy on structure and properties has been investigated. Microstructural and phase analysis have been investigated by using optical microscopy, scanning electron microscope (SEM) equipped with EDAX. For low carbon addition (0.1 wt.%), two-phase microstructure consisting of precipitates of TiC in B2 matrix. The presence of large amount of carbon (1.0 or 1.5 wt.%) resulted formation of Fe3AlC0.5 and TiC precipitates in B2 matrix. The results show that the mechanical properties of Fe-22.0Al-5.0Ti increased with increase in the carbon content and strongly depend upon nature and volume fraction of different precipitates. The volume fraction of precipitates increased with increase in the content of carbon. The behavior of Fe-22.0Al-5.0Ti alloy was explained by the combined effect of precipitation hardening and solid solution strengthening. The main effect of addition of carbon related to improvement in the compressive strength without loss in the ductility. The decrease in the wear rate is mainly attributed to the high hardness of the composites and as well hard TiC play a role of load carrying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.