Abstract

Efficient and productive manufacturing of freeform shapes requires a suitable three-dimensional CAD model at the entrance to the CAM system. The paper deals with the impact of NURBS or B-spline CAD model geometric continuity on the accuracy and productivity of 5-axis ball-end milling of freeform surfaces. The relationship between a different order of CAD model geometric continuity and the quality of the toolpath generated in CAM system is analysed and demonstrated on an example of a Blisk blade profile. In order to reveal the effect of CAD geometry on the quality of the machined surface, linear interpolation of cutter location points, i.e. piecewise linear discrete toolpath, is considered. Also, no further smoothing of the toolpath is applied. The distance of the cutter location points is commonly used as the indicator of toolpath quality. In addition, the discrete curvature of a linear discrete toolpath is introduced here, and its dependence on the curvature and continuity of the underlying CAD model is demonstrated. In this paper, it is shown that increasing the order of CAD model geometric continuity significantly eliminates sharp changes in the distance of cutter location points, and smoothes the discrete curvature of the toolpath. Finally, it is experimentally verified that increasing the continuity of the CAD model from G0 to G3, while maintaining the same cutting conditions, leads to an increase in workpiece accuracy and a reduction in machining time, without the need to smooth the toolpath generated in the CAM system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call