Abstract

The demand of long span bridge is increasing with infrastructure magnification. To achieve maximum central span in bridges is a motivating rational challenge. The bridge with more central span can be achieved using high strength materials and innovative forms of the bridges. The cable-stayed bridge has better structural stiffness and suspension bridge has ability to offer longer span thus combination of above two structural systems could achieve very long span cable-stayed suspension hybrid bridge. To distinguish behaviour and check the feasibility of this innovative form of hybrid bridge, 1400m central span and 312m side span cable-stayed suspension hybrid bridge is considered for analysis. The suspension portion length in central span is also playing important role in behaviour of the entire bridge. Bridge behaviour is presented for variable length of suspension portion in form of suspension portion to main span ratio. The main cable sag in central span is playing important role on behavior of the entire bridge. It directly influences the inclination angles of the main cables, the height of pylon and thus forces in pylon. The axial force in main cable is directly depending on the sag of main cable. The effects of main cable sag is studied by considering dimensionless parameter as sag to main span ratio as 1/9, 1/10 and 1/11. Paper also discusses results of nonlinear static analysis and modal analysis carried out using SAP2000 v14.0.0. The time period of bridge is used to present the behavior of bridge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call