Abstract

The large variation of x-ray fluence at the detector in cone-beam CT (CBCT) poses a significant challenge to detectors' limited dynamic range, resulting in the loss of skinline as well as reduction of CT number accuracy, contrast-to-noise ratio, and image uniformity. The authors investigate the performance of a bowtie filter implemented in a system for image-guided radiation therapy (Elekta oncology system, XVI) as a compensator for improved image quality through fluence modulation, reduction in x-ray scatter, and reduction in patient dose. Dose measurements with and without the bowtie filter were performed on a CTDI Dose phantom and an empirical fit was made to calculate dose for any radial distance from the central axis of the phantom. Regardless of patient size, shape, anatomical site, and field of view, the bowtie filter results in an overall improvement in CT number accuracy, image uniformity, low-contrast detectability, and imaging dose. The implemented bowtie filter offers a significant improvement in imaging performance and is compatible with the current clinical system for image-guided radiation therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.