Abstract

Abstract The final maximum deformation of a reinforced circular cylindrical shell caused by a briefly applied, intense loading is considered. The maximum deformation is obtained in a form which requires a double quadrature of the pressure where the limits of the integration are determined from side conditions. Attempts are made to find a simple analytic approximation, but the attempts are unsuccessful for loads of practical importance. A straightforward graphical-numerical method of solution is devised. Several examples are considered in support of the conclusions. The shell is assumed to be infinitely long, so that end effects may be neglected. The load is assumed to be applied to the entire shell simultaneously. The shell is assumed a perfect cylinder, and the reinforcements are taken as rigid. Finally, the shell is assumed to be made of an ideal rigid-plastic material which satisfies a certain simplified yield condition and the associated flow rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.