Abstract

The aim of this study was to investigate the influence of biogenic and synthetic starting materials on properties of porous hydroxyapatite (HAp) bioceramics. HAp powders were synthesized by modified precipitation method using biogenic calcium carbonates (ostrich (Struthio camelus) egg shells, hen (Gallus gallus domesticus) egg shells, snail (Viviparus contectus) shells) and synthetic calcium oxides (Sigma-Aldrich and Fluka). Specific surface area, molecular structure and morphology of obtained powders were determined. As-synthesized HAp powders had a varied specific surface area with a wide range from 83 to 150 m2g-1 depending on CaO source. Porous bodies of HAp were prepared by in situ viscous mass foaming with NH4HCO3 as pore forming agent. Foamed and dried green bodies were sintered at 1100 °C. The obtained bioceramics were investigated using Archimedes method, field emission scanning electron microscopy and Brunauer-Emmett-Teller method. There are considerable differences between porous HAp bioceramics structures prepared from different sources of CaO. The choice of starting material substantially affects the macro-and microstructure of prepared porous bioceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.