Abstract

Asphaltenes are traditionally considered to be recalcitrant to microbial alteration. Resins and asphaltenes of seven biodegraded oils extracted from reservoir cores of two columns (Es3 and Es1) of the Lengdong oilfield in the Liaohe Basin, NE China, were studied to test this hypothesis. Elemental (C, H, N, O, S) and isotopic compositions (δ 13C and δ 15N) were measured, FT-IR was used to study the oxygenated functionalities of both resins and asphaltenes, and Py–GC–MS was used to elucidate how alkyl side chains of asphaltenes were altered during biodegradation. We conclude that the products of biodegradation, such as carboxylic acids, phenol and alcohols, may not only contribute to the resin fraction of crude oils, but also are linked with functionalities of resins and asphaltenes. The amount of asphaltenes increases because some resin molecules are enlarged and their polarity increased such that they can be precipitated by hexane as newly generated asphaltenes. Thus, the hydrocarbons that are progressively consumed during biodegradation can pull the δ 13C of asphaltene fraction closer to the δ 13C of the altered resins and hydrocarbons that were consumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.