Abstract

The effect of benzene ring fusion on the aromaticity of cycl[3.2.2]azine was studied by calculating topological resonance energy (TRE), the percentage topological resonance energy (%TRE), and magnetic resonance energy (MRE). The bond resonance energy (BRE) and circuit resonance energy (CRE) indices were used to estimate the local aromaticity. Our BRE and CRE results show that the central nitrogen atom plays a significant role both in the global and local aromaticity of the compounds in our study, and contrary to what has been reported in the literature, none of these compounds are peripheral π‐electronic systems. In the case of benzene ring‐fused derivatives, benzene ring(s) exhibit relatively larger local aromaticity and reduce the local aromaticity of the central portion of cycl[3.2.2]azine to a level comparable to a corresponding non‐benzene fused parent system. Ring current results predict that a strong diamagnetic current flows around the whole molecular perimeter. The diatropic bond current results, as computed here, are in good agreement with the observed 1H‐NMR chemical shifts of these compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call