Abstract

Purpose The purpose of this paper is to present the influence of modifying the fabric surface made from basalt fibers by the magnetron sputtering of chromium and aluminum layers on its resistance to contact heat and comfort properties. Design/methodology/approach In order to modify the surface of basalt fabric, the process of physical deposition from the gas phase was used. It relies on creating a coating on a selected substrate by applying physical atoms, molecules or ions of specific chemical compounds. The trial of modification was carried out using the magnetron sputtering method due to the material versatility, application flexibility and ability to apply layers on substrates of various sizes and properties. Findings The findings obtained regarding the heat resistance to contact heat and thermal insulation (comfort) properties show different values depending on the type of metal deposited and the thickness of coating layer. It was found that the modification of basalt fabric surface at the micrometer level changes the tested parameters. Research limitations/implications This paper presents the results of resistance to contact heat and thermal insulation properties only for the twill fabric made of basalt fiber. The surface modification of fabric was carried out using the chromium and aluminum of two values of layer thickness (1 and 5 µm). Originality/value So far, no tests have been carried out to modify the surface of fabric made from basalt fiber yarns using the magnetron sputtering method. In addition, it has not been studied, how the modification of fabric affects its resistance to contact heat and thermophysiological properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.