Abstract

The effects of B4C addition on the room temperature physical properties and hot mechanical properties of MgO-SiC based refractory castables were investigated using magnesia and SiC fines as starting materials and silica fume as a binder. The microstructure was characterized by scanning electron microscopy (SEM). The results showed that drying strength of MgO-SiC based castables decreased with the increase in B4C addition, the immediate temperature strength and hot temperature strength increased. The HMOR at 1400°C for 0.5h decreased. This is because B4C oxidized and produced a liquid phase during heating, contributing to sintering and making the material denser. So the cold strength increased. On the other hand, due to the formation of liquids, direct binding reduced and the HMOR decreased

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call