Abstract

The resistance of austenite to plastic deformation (austenite flow stress) was measured using a high temperature tensile apparatus. The flow stress was then correlated with the Ms temperature as determined magnetically during subsequent cooling. In one part of the study, the flow stress of the austenite was varied only by work hardening the austenite, allowing the austenite composition, which is known to affect Ms, to be held constant. A decrease in Ms temperature with increasing austenite flow stress was observed. This observation was supported by the observation of a decrease in the amount of austenite transformed at 25°C. In the other part of the study, a series of alloy steels of different chemical compositions was tested. A decrease in Ms temperature with increasing austenite flow stress was again observed. Strengthening of austenite by plastic deformation was shown not to change the chemical driving force for transformation. The effect of deformation on Ms temperature thus results from its influence on either the nucleation or the growth process. While the effect of austenite deformation on martensite nucleation is uncertain, specific nucleation models can account for only approximately one-third of the nonchemical free energy change which accompanies transformation. A proposal, consistent with the observations, was made that the energy expended for the deformation of austenite during martensite plate growth could reasonably account for a substantial part of the nonchemical free energy change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.